Complex Analysis: Midterm Exam

Aletta Jacobshal 01, Monday 14 December 2015, 09:00-11:00
Exam duration: 2 hours

Instructions - read carefully before starting

- Do not forget to very clearly write your full name and student number on each answer sheet and on the envelope. Do not seal the ennvelope.
- 10 points are "free" for handing-in the assignment. There are 5 questions and the total number of points is 100. The exam grade is the total number of points divided by 10.
- Solutions should be complete and clearly present your reasoning.

Question 1 (20 points)

Consider the function

$$
f(z)=\frac{y-1}{x^{2}+(y-1)^{2}}+i \frac{x}{x^{2}+(y-1)^{2}},
$$

where $z=x+i y$.
(a) (10 points) Prove that $f(z)$ is analytic for $z \neq i$.

Solution

We write

$$
f(z)=u(x, y)+i v(x, y)=\frac{y-1}{x^{2}+(y-1)^{2}}+i \frac{x}{x^{2}+(y-1)^{2}} .
$$

Then we have

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =-\frac{2 x(y-1)}{\left(x^{2}+(y-1)^{2}\right)^{2}} \\
\frac{\partial u}{\partial y} & =\frac{x^{2}-(y-1)^{2}}{\left(x^{2}+(y-1)^{2}\right)^{2}} \\
\frac{\partial v}{\partial x} & =\frac{-x^{2}+(y-1)^{2}}{\left(x^{2}+(y-1)^{2}\right)^{2}} \\
\frac{\partial v}{\partial y} & =-\frac{2 x(y-1)}{\left(x^{2}+(y-1)^{2}\right)^{2}}
\end{aligned}
$$

Therefore the Cauchy-Riemann equations are satisfied for all $x+i y$ with $x^{2}+(y-1)^{2} \neq 0$ which is equivalent to $x \neq 0$ and $y \neq 1$ or $z=x+i y \neq i$.
Moreover, all the first order partial derivatives of u and v exist and are continuous in $D=\mathbb{C} \backslash\{i\}$ so the conditions are satisfied for f to be differentiable at every $z \in D$.
Since D is open f is analytic in D.
(b) (10 points) Write $f(z)$ as a function of z.

Solution

The expression $x^{2}+(y-1)^{2}$ can be recognized as $|x+i(y-1)|^{2}=|x+i y-i|^{2}=|z-i|^{2}$. Therefore

$$
f(z)=\frac{(y-1)+i x}{|z-i|^{2}}=\frac{i(x-i(y-1))}{(z-i) \overline{(z-i)}}=\frac{i \overline{(z-i)}}{(z-i)(z-i)}=\frac{i}{z-i} .
$$

Question 2 (20 points)

Consider the two smooth arcs γ_{1} and γ_{2} shown in Figure 1. The arc γ_{1} is a straight line from the point $-i$ to the point $1+i$ and the arc γ_{2} is a smooth curve from $1+i$ to 2 for which $y=(x-2)^{2}$.

Figure 1: Smooth arcs γ_{1} and γ_{2} for Question 2.
(a) (10 points) Parameterize the two smooth arcs.

Solution

We denote by γ_{1} the straight line from $-i$ to $1+i$. This can be parameterized by

$$
z_{1}(t)=-i(1-t)+(1+i) t=t+i(2 t-1), \quad 0 \leq t \leq 1
$$

We denote by γ_{2} the curve from $1+i$ to 2 . This is part of the graph of the function $y=(x-2)^{2}$ so it can be parameterized by

$$
z_{2}(t)=t+i(t-2)^{2}, \quad 1 \leq t \leq 2
$$

(b) (10 points) Compute the integral

$$
\int_{\gamma_{1}} \bar{z}^{2} d z
$$

Solution

We have

$$
\begin{aligned}
\int_{\gamma_{1}} \bar{z}^{2} d z & =\int_{0}^{1} \bar{z}_{1}(t)^{2} z_{1}^{\prime}(t) d t \\
& =\int_{0}^{1}(t-i(2 t-1))^{2}(1+2 i) d t \\
& =(1+2 i) \int_{0}^{1}\left(t^{2}-(2 t-1)^{2}-2 i t(2 t-1)\right) d t \\
& =(1+2 i) \int_{0}^{1}\left[(-3-4 i) t^{2}+(4+2 i) t-1\right] d t \\
& =(1+2 i)\left[\frac{1}{3}(-3-4 i)+\frac{1}{2}(4+2 i)-1\right] \\
& =-\frac{1}{3}(1+2 i) i \\
& =\frac{1}{3}(2-i)
\end{aligned}
$$

Question 3 (20 points)

Compute the value of the integral

$$
\int_{\Gamma} \frac{\cos (\pi z)}{(z-i)(z-3)^{2}} d z
$$

where Γ is the closed contour shown in Figure 2. Give the result as a complex number in Cartesian form $x+i y$.

Figure 2: Contour Γ for Question 3.

Solution

The generalized Cauchy integral formula for $n=1$ and $z_{0}=3$ gives that for a function $g(z)$ analytic on and inside Γ we have

$$
\int_{\Gamma} \frac{g(z)}{(z-3)^{2}} d z=-2 \pi i g^{\prime}(3),
$$

where the minus sign comes from the fact that Γ is negatively oriented.
Choosing

$$
g(z)=\frac{\cos (\pi z)}{z-i},
$$

we note that it is analytic on and inside Γ so it satisfies the conditions for applying the formula. Therefore

$$
\int_{\Gamma} \frac{\cos (\pi z)}{(z-i)(z-3)^{2}} d z=-2 \pi i g^{\prime}(3) .
$$

We then compute

$$
g^{\prime}(z)=-\frac{\cos (\pi z)+\pi(z-i) \sin (\pi z)}{(z-i)^{2}},
$$

so

$$
g^{\prime}(3)=-\frac{\cos (3 \pi)+\pi(3-i) \sin (3 \pi)}{(3-i)^{2}}=\left(\frac{3+i}{10}\right)^{2}=\frac{4+3 i}{50} .
$$

Finally,

$$
\int_{\Gamma} \frac{\cos (\pi z)}{(z-i)(z-3)^{2}} d z=\frac{\pi}{25}(3-4 i) .
$$

Question 4 (20 points)

Consider the function

$$
f(z)=e^{\frac{1}{2} \log (1-z)} e^{\frac{1}{2} \mathcal{L}_{0}(1+z)},
$$

where $\mathcal{L}_{0}(z)$ is the branch of the logarithm function with a branch cut along the positive real axis $[0, \infty)$ and $\log (z)$ is the principal value of the logarithm. Show that $f(z)$ is continuous at z in the interval $(1, \infty)$ on the real axis.

Solution

First, some remarks. Let $z \in(1, \infty)$. Then $1-z<0$ and the principal value of the logarithm is discontinuous on the negative real axis so $\log (1-z)$ is discontinuous for $z \in(1, \infty)$. We also have $1+z>2$ and \mathcal{L}_{0} is discontinuous along the positive real axis so $\mathcal{L}_{0}(1+z)$ is discontinuous for $z \in(-1, \infty)$ which means it is discontinuous for $z \in(1, \infty)$. These are indications that the function $f(z)$ could be discontinuous for $z \in(1, \infty)$. Nevertheless, these arguments are not a proof and we will instead show that the function is continuous for $z \in(1, \infty)$. Essentially, the two discontinuities cancel out. Moreover, it is possible to show that $f(z)$ is a branch of the multivalued function $\left(1-z^{2}\right)^{1 / 2}$ with branch cut the interval $(-1,1)$. I give below two possible solutions.

Proof 1

According to the remarks above the given function could be discontinuous along the interval $(1, \infty)$. Therefore, any possible discontinuity will manifest itself if we approach the interval from above and from below.

For this reason, let $z=x \pm i \varepsilon$ with $x>1$ and $\varepsilon>0$. Since we plan to take the limit $\varepsilon \rightarrow 0$ we can assume that ε is arbitrarily small. We have

$$
1-z=1-x \mp i \varepsilon
$$

so

$$
\log (1-z)=\log (1-x \mp i \varepsilon)
$$

Since $x>1$ we have $1-x<0$ and therefore

$$
\lim _{\varepsilon \rightarrow 0} \log (1-(x+i \varepsilon))=\log |1-x|-\pi i,
$$

and

$$
\lim _{\varepsilon \rightarrow 0} \log (1-(x-i \varepsilon))=\log |1-x|+\pi i .
$$

We can write these limits together as

$$
\lim _{\varepsilon \rightarrow 0} \log (1-(x \pm i \varepsilon))=\log |1-x| \mp \pi i,
$$

and by the continuity of the exponential

$$
\lim _{\varepsilon \rightarrow 0} e^{\frac{1}{2} \log (1-(x \pm i \varepsilon))}=e^{\frac{1}{2} \lim _{\varepsilon \rightarrow 0} \log (1-(x \pm i \varepsilon))}=e^{\frac{1}{2} \log |1-x|} e^{\mp \frac{1}{2} \pi i}=\mp i \sqrt{x-1} .
$$

We also have

$$
1+z=1+x \pm i \varepsilon
$$

$$
\mathcal{L}_{0}(1+z)=\mathcal{L}_{0}(1+x \pm i \varepsilon) .
$$

Since $x>1$ we have $1+x>2$ and therefore

$$
\lim _{\varepsilon \rightarrow 0} \mathcal{L}_{0}(1+x+i \varepsilon)=\log (1+x)
$$

and

$$
\lim _{\varepsilon \rightarrow 0} \mathcal{L}_{0}(1+x-i \varepsilon)=\log (1+x)+2 \pi .
$$

By the continuity of the exponential

$$
\lim _{\varepsilon \rightarrow 0} e^{\frac{1}{2} \mathcal{L}_{0}(1+x+i \varepsilon)}=e^{\frac{1}{2} \log (1+x)}=\sqrt{1+x},
$$

and

$$
\lim _{\varepsilon \rightarrow 0} e^{\frac{1}{2} \mathcal{L}_{0}(1+x-i \varepsilon)}=e^{\frac{1}{2}[\log (1+x)+2 \pi i]}=e^{\frac{1}{2} \log (1+x)} e^{i \pi}=-e^{\frac{1}{2} \log (1+x)}=-\sqrt{1+x} .
$$

Writing these limits together we have

$$
\lim _{\varepsilon \rightarrow 0} e^{\frac{1}{2} \mathcal{L}_{0}(1+(x \pm i \varepsilon))}= \pm \sqrt{1+x} .
$$

Finally, for $x>1$, we have

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} f(x \pm i \varepsilon) & =\lim _{\varepsilon \rightarrow 0} e^{\frac{1}{2} \log (1-(x \pm i \varepsilon))} \lim _{\varepsilon \rightarrow 0} e^{\frac{1}{2} \mathcal{L}_{0}(1+(x \pm i \varepsilon))}=(\mp i \sqrt{x-1})(\pm \sqrt{1+x}) \\
& =-i \sqrt{x-1} \sqrt{x+1}=-i \sqrt{x^{2}-1} .
\end{aligned}
$$

Since the two limits are equal the function is continuous.

Proof 2

Let $z=x+\varepsilon$ with $x>1$ and $\varepsilon \in \mathbb{C}$. Since we plan to take the limit $\varepsilon \rightarrow 0$ we can assume that $|\varepsilon|$ is arbitrarily small. We have

$$
1-z=1-x-\varepsilon
$$

so

$$
\log (1-z)=\log (1-x-\varepsilon),
$$

and

$$
\lim _{\varepsilon \rightarrow 0} \log (1-x-\varepsilon)=\lim _{\varepsilon \rightarrow 0} \log |1-x-\varepsilon|+i \lim _{\varepsilon \rightarrow 0} \operatorname{Arg}(1-x-\varepsilon) .
$$

The absolute value is a continuous function and the real logarithm is continuous at positive real numbers so $\lim _{\varepsilon \rightarrow 0} \log |1-x-\varepsilon|=\log |1-x|$. Since $x>1$ we have $1-x<0$ and therefore

$$
\lim _{\varepsilon \rightarrow 0} \operatorname{Arg}(1-x-\varepsilon)= \begin{cases}-\pi, & \text { if } \operatorname{Im} \varepsilon>0 \\ \pi, & \text { if } \operatorname{Im} \varepsilon<0\end{cases}
$$

Therefore

$$
\lim _{\varepsilon \rightarrow 0} \log (1-x-\varepsilon)= \begin{cases}\log |1-x|-\pi i, & \text { if } \operatorname{Im} \varepsilon>0 \\ \log |1-x|+\pi i, & \text { if } \operatorname{Im} \varepsilon<0\end{cases}
$$

By the continuity of the exponential

$$
\lim _{\varepsilon \rightarrow 0} e^{\frac{1}{2} \log (1-x-\varepsilon)}= \begin{cases}e^{\frac{1}{2} \log |1-x|} e^{-\pi i / 2}=-i \sqrt{x-1}, & \text { if } \operatorname{Im} \varepsilon>0, \\ e^{\frac{1}{2} \log |1-x|} e^{\pi i / 2}=i \sqrt{x-1}, & \text { if } \operatorname{Im} \varepsilon<0\end{cases}
$$

We also have

$$
1+z=1+x+\varepsilon
$$

so

$$
\mathcal{L}_{0}(1+z)=\mathcal{L}_{0}(1+x+\varepsilon),
$$

and

$$
\lim _{\varepsilon \rightarrow 0} \mathcal{L}_{0}(1+x+\varepsilon)=\lim _{\varepsilon \rightarrow 0} \log |1+x+\varepsilon|+i \lim _{\varepsilon \rightarrow 0} \arg _{0}(1+x+\varepsilon) .
$$

Since $x>1$ we have $1+x>2$ and therefore

$$
\lim _{\varepsilon \rightarrow 0} \log |1+x+\varepsilon|=\log (1+x),
$$

and

$$
\lim _{\varepsilon \rightarrow 0} \arg _{0}(1+x+\varepsilon)= \begin{cases}0, & \text { if } \operatorname{Im} \varepsilon>0 \\ 2 \pi, & \text { if } \operatorname{Im} \varepsilon<0\end{cases}
$$

Therefore

$$
\lim _{\varepsilon \rightarrow 0} \mathcal{L}_{0}(1+x+\varepsilon)= \begin{cases}\log (1+x), & \text { if } \operatorname{Im} \varepsilon>0 \\ \log (1+x)+2 \pi i, & \text { if } \operatorname{Im} \varepsilon<0\end{cases}
$$

By the continuity of the exponential

$$
\lim _{\varepsilon \rightarrow 0} e^{\frac{1}{2} \mathcal{L}_{0}(1+x+\varepsilon)}= \begin{cases}e^{\frac{1}{2} \log (1+x)} e^{0}=\sqrt{x+1}, & \text { if } \operatorname{Im} \varepsilon>0, \\ e^{\frac{1}{2} \log (1+x)} e^{\pi i}=-\sqrt{x+1}, & \text { if } \operatorname{Im} \varepsilon<0\end{cases}
$$

So, for $x>1$, we have

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} f(x+\varepsilon) & =\lim _{\varepsilon \rightarrow 0} e^{\frac{1}{2} \log (1-x-\varepsilon)} \lim _{\varepsilon \rightarrow 0} e^{\frac{1}{2} \mathcal{L}_{0}(1+x+\varepsilon)} \\
& = \begin{cases}(-i \sqrt{x-1})(\sqrt{x+1}), & \text { if } \operatorname{Im} \varepsilon>0, \\
(i \sqrt{x-1})(-\sqrt{x+1}), & \text { if } \operatorname{Im} \varepsilon<0,\end{cases} \\
& =-i \sqrt{x^{2}-1} .
\end{aligned}
$$

Since the limit does not depend on the direction of approach (that is, the sign of $\operatorname{Im} \varepsilon$) the function is continuous.

Question 5 (10 points)

Consider an entire function $f(z)$ such that its absolute value is bounded below by a positive number, that is, $|f(z)|>M>0$ for all $z \in \mathbb{C}$. Show that $f(z)$ is constant.

Solution

Since $|f(z)|>M$ we conclude that $f(z) \neq 0$ for all $z \in \mathbb{C}$. This means that $g(z)=1 / f(z)$ is entire.

Then $|g(z)|=1 /|f(z)|<1 / M$ for all $z \in \mathbb{C}$, that is, $g(z)$ is bounded.
Since $g(z)$ is entire and bounded it must be constant, so $g(z)=c, c \in \mathbb{C}$, and therefore $f(z)=1 / g(z)$ is constant. In particular, $f(z)=1 / c$ for all $z \in \mathbb{C}$.

End of the exam (Total: 90 points)

